উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratios of sub-multiplier angles
barcode
এ অধ্যায়ের পাঠ্যসূচী
উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of sub-multiple angles
একটি কোণকে কোনো পূর্ণসংখ্যা দ্বারা ভাগ করলে উক্ত কোণের উপ-গুণিতক কোণ পাওয়া যায়।
যেমনঃ \(A\) কোণের উপ-গুণিতক কোণগুলি \(\frac{A}{2}, \ \frac{A}{3}, \ \frac{A}{4} .........\frac{A}{n}\) ইত্যাদি।
\(\sin{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\sin{A}\) in terms of \(\sin{\frac{A}{2}}\) and \(\cos{\frac{A}{2}}\)
\(\sin{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(1-\sin{2}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)

প্রমাণঃ
আমরা জানি,
\(\sin{2A}=2\sin{A}\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\therefore \sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
আবার,
\(1+\sin{2A}=(\sin{A}+\cos{A})^2 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(\therefore 1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
আবার,
\(1-\sin{2A}=(\sin{A}-\cos{A})^2 ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\therefore 1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\sin{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\sin{A}\) in terms of \(\tan{\frac{A}{2}}\)
\(\sin{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)

প্রমাণঃ
আমরা জানি,
\(\sin{2A}=\frac{2\tan{A}}{1+\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\cos{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\cos{A}\) in terms of \(\sin{\frac{A}{2}}\) and \(\cos{\frac{A}{2}}\)
\(\cos{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(1-\cos{A}=2\sin^2{\frac{A}{2}}\)

প্রমাণঃ
আমরা জানি,
\(\cos{2A}=\cos^2{A}-\sin^2{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
আবার,
\(\cos{2A}=2\cos^2{A}-1 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}-1\)
\(\therefore \cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\cos{A}=2\cos^2{\frac{A}{2}}-1\)
আবার,
\(\cos{2A}=1-2\sin^2{A} ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
আবার,
\(1+\cos{2A}=2\cos^2{A} ........(4)\)
\((4)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}\)
\(\therefore 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
আবার,
\(1-\cos{2A}=2\sin^2{A} ........(5)\)
\((5)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\cos{\left(2\times\frac{A}{2}\right)}=2\sin^2{\frac{A}{2}}\)
\(\therefore 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\cos{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\cos{A}\) in terms of \(\tan{\frac{A}{2}}\)
\(\cos{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)

প্রমাণঃ
আমরা জানি,
\(\cos{2A}=\frac{1-\tan^2{A}}{1+\tan^2{A}} .......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
আবার,
\(1-\cos{A}=2\sin^2{\frac{A}{2}} ........(2)\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}} ........(3)\)
\((2)\) কে \((3)\) দ্বারা ভাগ করে,
\(\frac{1-\cos{A}}{1+\cos{A}}=\frac{2\sin^2{\frac{A}{2}}}{2\cos^2{\frac{A}{2}}} \)
\(\Rightarrow \frac{1-\cos{A}}{1+\cos{A}}=\frac{\sin^2{\frac{A}{2}}}{\cos^2{\frac{A}{2}}} \)
\(\therefore \frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)

\(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\tan{A}\) in terms of \(\tan{\frac{A}{2}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)

প্রমাণঃ
আমরা জানি,
\(\tan{2A}=\frac{2\tan{A}}{1-\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\tan{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\therefore \tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
Expressing \(\cot{A}\) in terms of \(\cot{\frac{A}{2}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)

প্রমাণঃ
আমরা জানি,
\(\cot{2A}=\frac{\cot^2{A}-1}{2\cot{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\left(2\times\frac{A}{2}\right)}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\therefore \cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\sin{A}\) কে \(\sin{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
Expressing \(\sin{A}\) in terms of \(\sin{\frac{A}{3}}\)
\(\sin{A}\) কে \(\sin{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)

প্রমাণঃ
আমরা জানি,
\(\sin{3A}=3\sin{A}-4\sin^3{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\sin{\left(3\times\frac{A}{3}\right)}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\therefore \sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\cos{A}\) কে \(\cos{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
Expressing \(\cos{A}\) in terms of \(\cos{\frac{A}{3}}\)
\(\cos{A}\) কে \(\cos{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)

প্রমাণঃ
আমরা জানি,
\(\cos{3A}=4\cos^3{A}-3\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cos{\left(3\times\frac{A}{3}\right)}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\therefore \cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
Expressing \(\tan{A}\) in terms of \(\tan{\frac{A}{3}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)

প্রমাণঃ
আমরা জানি,
\(\tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\tan{\left(3\times\frac{A}{3}\right)}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\therefore \tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
Expressing \(\cot{A}\) in terms of \(\cot{\frac{A}{3}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)

প্রমাণঃ
আমরা জানি,
\(\cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cot{\left(3\times\frac{A}{3}\right)}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\therefore \cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}\) কে \(\cot{A}\) এর মাধ্যমে প্রকাশ
Expressing \(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}\) in terms of \(\cot{A}\)
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)

প্রমাণঃ
আমরা জানি,
\(\cot{A}-\tan{A}=2\cot{2A} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{\left(2\times\frac{A}{2}\right)}\)
\(\therefore \cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(15^{o}\)
\(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
\(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
\(\cot{15^{o}}=2+\sqrt{3}\)

প্রমাণঃ
আমরা জানি,
\(\sin{15^{o}}=\sin{(45^{o}-30^{o})}\)
\(\Rightarrow \sin{15^{o}}=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)

\(\Rightarrow \sin{15^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)

\(\Rightarrow \sin{15^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\cos{15^{o}}=\sqrt{1-\sin^2{15^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(15^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(=\sqrt{1-\frac{(\sqrt{3}-1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1-2\sqrt{3}}{8}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)

\(=\sqrt{1-\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{8}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)

\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\therefore \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\tan{15^{o}}=\frac{\sin{15^{o}}}{\cos{15^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।

\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
বিকল্প পদ্ধতিঃ
আমরা জানি,
\(\tan{15^{o}}=\tan{(45^{o}-30^{o})}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)

\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)

\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।

\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
আবার,
\(cosec \ {15^{o}}=\frac{1}{\sin{15^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।

\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
আবার,
\(\sec{15^{o}}=\frac{1}{\cos{15^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)

\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।

\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore \sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
\(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
আমরা জানি,
\(\cot{15^{o}}=\cot{(45^{o}-30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}+1}{\cot{30^{o}}-\cot{45^{o}}}\) ➜ \(\because \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)

\(=\frac{1\times\sqrt{3}+1}{\sqrt{3}-1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।

\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \cot{15^{o}}=2+\sqrt{3}\)
\(\cot{15^{o}}=2+\sqrt{3}\)
\(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(18^{o}\)
\(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(cosec \ {18^{o}}=\sqrt{5}+1\)
\(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)

প্রমাণঃ
ধরি,
\(\theta=18^{o}\)
\(\Rightarrow 5\theta=5\times18^{o}\)
\(\Rightarrow 5\theta=90^{o}\)
\(\Rightarrow 2\theta+3\theta=90^{o}\)
\(\Rightarrow 2\theta=90^{o}-3\theta\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}\times1-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\cos{3\theta}\) ➜ straight3
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।

\(\Rightarrow 2\sin{\theta}\cos{\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\cos{3A}=4\cos^3{A}-3\cos{A}\)

\(\Rightarrow 2\sin{\theta}\cos{\theta}=\cos{\theta}(4\cos^2{\theta}-3)\)
\(\Rightarrow 2\sin{\theta}=4\cos^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=4(1-\sin^2{\theta})-3\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)

\(\Rightarrow 2\sin{\theta}=4-4\sin^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=1-4\sin^2{\theta}\)
\(\Rightarrow 4\sin^2{\theta}+2\sin{\theta}-1=0\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{2^2-4\times4\times(-1)}}}{2\times4}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}\)

\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4+16}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{20}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4\times5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{2\sqrt{5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{2(-1\pm{\sqrt{5}})}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-1\pm{\sqrt{5}}}{4}\)
\(\Rightarrow \sin{18^{o}}=\frac{-1+\sqrt{5}}{4}\) ➜ \(\because 18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
তাই \(\sin{18^{o}}\) এর মান ধনাত্মক হবে।

\(\therefore \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\cos{18^{o}}=\sqrt{1-\sin^2{18^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^2}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)

\(=\sqrt{1-\frac{1}{16}(\sqrt{5}-1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}-1)^2\}}\)
\(=\frac{1}{4}\sqrt{16-(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)

\(=\frac{1}{4}\sqrt{16-(6-2\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{16-6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\tan{18^{o}}=\frac{\sin{18^{o}}}{\cos{18^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{1}{4}(\sqrt{5}-1)}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
এবং \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}-1)}}{\sqrt{100-20}}\) ➜ \(\because \sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \(\sqrt{80}=4\sqrt{5}\)

\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{(5-2\sqrt{5})}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
আবার,
\(cosec \ {18^{o}}=\frac{1}{\sin{18^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)

\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।

\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore cosec \ {18^{o}}=\sqrt{5}+1\)
\(cosec \ {18^{o}}=\sqrt{5}+1\)
আবার,
\(\sec{18^{o}}=\frac{1}{\cos{18^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)

\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)➜ \(\because \sqrt{80}=4\sqrt{5}\)

\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore \sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\cot{18^{o}}=\frac{1}{\tan{18^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)

\(=\frac{1}{\frac{1}{5}\sqrt{25-10\sqrt{5}}}\) ➜ \(\because \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)

\(=\frac{5}{\sqrt{25-10\sqrt{5}}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25+10\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{5\sqrt{5}}\)➜ \(\because \sqrt{125}=5\sqrt{5}\)

\(=\frac{\sqrt{25+10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(36^{o}\)
\(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\sec{36^{o}}=\sqrt{5}-1\)
\(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)

প্রমাণঃ
লেখা যায়,
\(\sin{36^{o}}=\sin{(2\times18^{o})}\)
\(=2\sin{18^{o}}\cos{18^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)

\(=2\times\frac{1}{4}(\sqrt{5}-1)\times\frac{1}{4}\sqrt{10+2\sqrt{5}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)

\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}-1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)

\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(6-2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}+1)(3-\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}+3-5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}-2)}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\cos{36^{o}}=\sqrt{1-\sin^2{36^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(36^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10-2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)

\(=\sqrt{1-\frac{1}{16}(10-2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10-2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}+1)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)

\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\tan{36^{o}}=\frac{\sin{36^{o}}}{\cos{36^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{1}{4}\sqrt{10-2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
এবং \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)

\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(6-2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2}\)
\(=\frac{2\sqrt{5-2\sqrt{5}}}{2}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
আবার,
\(cosec \ {36^{o}}=\frac{1}{\sin{36^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)

\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\sec{36^{o}}=\frac{1}{\cos{36^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)

\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।

\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore \sec{36^{o}}=\sqrt{5}-1\)
\(\sec{36^{o}}=\sqrt{5}-1\)
আবার,
\(\cot{36^{o}}=\frac{1}{\tan{36^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)

\(=\frac{1}{\sqrt{5-2\sqrt{5}}}\) ➜ \(\because \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)

\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5+2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(54^{o}\)
\(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(cosec \ {54^{o}}=\sqrt{5}-1\)
\(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)

প্রমাণঃ
লেখা যায়,
\(\sin{54^{o}}=\sin{(3\times18^{o})}\)
\(=3\sin{18^{o}}-4\sin^3{18^{o}}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)

\(=3\times\frac{1}{4}(\sqrt{5}-1)-4\times\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^3\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)

\(=\frac{3}{4}(\sqrt{5}-1)-4\times\frac{1}{64}(\sqrt{5}-1)^3\)
\(=\frac{3}{4}(\sqrt{5}-1)-\frac{1}{16}(\sqrt{5}-1)^3\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(\sqrt{5}-1)^2\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(5+1-2\sqrt{5})\right\}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)

\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(6-2\sqrt{5})\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-6+2\sqrt{5}\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{6+2\sqrt{5}\right\}\)
\(=\frac{2}{16}(\sqrt{5}-1)(3+\sqrt{5})\)
\(=\frac{1}{8}(3\sqrt{5}-3+5-\sqrt{5})\)
\(=\frac{1}{8}(2\sqrt{5}+2)\)
\(=\frac{2}{8}(\sqrt{5}+1)\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\cos{54^{o}}=\sqrt{1-\sin^2{54^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(54^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}+1)\right\}^2}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)

\(=\sqrt{1-\frac{1}{16}(\sqrt{5}+1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}+1)^2\}}\)
\(=\frac{1}{4}\sqrt{\{16-(5+1+2\sqrt{5})\}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)

\(=\frac{1}{4}\sqrt{\{16-(6+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\tan{54^{o}}=\frac{\sin{54^{o}}}{\cos{54^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{1}{4}(\sqrt{5}+1)}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
এবং \(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)

\(=\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{5}+1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
আবার,
\(cosec \ {54^{o}}=\frac{1}{\sin{54^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)

\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।

\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore cosec \ {54^{o}}=\sqrt{5}-1\)
\(cosec \ {54^{o}}=\sqrt{5}-1\)
আবার,
\(\sec{54^{o}}=\frac{1}{\cos{54^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)

\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore \sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\cot{54^{o}}=\frac{1}{\tan{54^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)

\(=\frac{1}{\frac{1}{5}\sqrt{25+10\sqrt{5}}}\) ➜ \(\because \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)

\(=\frac{5}{\sqrt{25+10\sqrt{5}}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25-10\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{5\sqrt{5}}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5(5-2\sqrt{5})}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(72^{o}\)
\(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\sec{72^{o}}=\sqrt{5}+1\)
\(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)

প্রমাণঃ
লেখা যায়,
\(\sin{72^{o}}=\sin{(2\times36^{o})}\)
\(=2\sin{36^{o}}\cos{36^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)

\(=2\times\frac{1}{4}\sqrt{10-2\sqrt{5}}\times\frac{1}{4}(\sqrt{5}+1)\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)

\(=\frac{1}{8}\sqrt{10-2\sqrt{5}}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}+1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1+2\sqrt{5})}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)

\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(6+2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}-1)(3+\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}-3+5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}+2)}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\cos{72^{o}}=\sqrt{1-\sin^2{72^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(72^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10+2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)

\(=\sqrt{1-\frac{1}{16}(10+2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}-1)^2}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)

\(=\frac{1}{4}(\sqrt{5}-1)\)
\(\therefore \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\tan{72^{o}}=\frac{\sin{72^{o}}}{\cos{72^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{1}{4}\sqrt{10+2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
এবং \(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)

\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)

\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
আবার,
\(cosec \ {72^{o}}=\frac{1}{\sin{72^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)

\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\sec{72^{o}}=\frac{1}{\cos{72^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)

\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।

\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore \sec{72^{o}}=\sqrt{5}+1\)
\(\sec{72^{o}}=\sqrt{5}+1\)
আবার,
\(\cot{72^{o}}=\frac{1}{\tan{72^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)

\(=\frac{1}{\sqrt{5+2\sqrt{5}}}\) ➜ \(\because \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)

\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5-2\sqrt{5}}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।

\(=\frac{\sqrt{5(5-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of the angle \(75^{o}\)
\(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\tan{75^{o}}=2+\sqrt{3}\)
\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
\(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
\(\cot{75^{o}}=2-\sqrt{3}\)

প্রমাণঃ
আমরা জানি,
\(\sin{75^{o}}=\sin{(45^{o}+30^{o})}\)
\(\Rightarrow \sin{75^{o}}=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)

\(\Rightarrow \sin{75^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)

\(\Rightarrow \sin{75^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\cos{75^{o}}=\sqrt{1-\sin^2{75^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(75^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।

\(=\sqrt{1-\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)

\(=\sqrt{1-\frac{(\sqrt{3}+1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1+2\sqrt{3}}{8}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)

\(=\sqrt{1-\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}-1)^2}{8}}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)

\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\therefore \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\tan{75^{o}}=\frac{\sin{75^{o}}}{\cos{75^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)

\(=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।

\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
বিকল্প পদ্ধতিঃ
আমরা জানি,
\(\tan{75^{o}}=\tan{(45^{o}+30^{o})}\)
\(=\frac{\tan{45^{o}}+\tan{30^{o}}}{1-\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)

\(=\frac{1+\frac{1}{\sqrt{3}}}{1-1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)

\(=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।

\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।

\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
\(\tan{75^{o}}=2+\sqrt{3}\)
আবার,
\(cosec \ {75^{o}}=\frac{1}{\sin{75^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)

\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)

\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।

\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
আবার,
\(\sec{75^{o}}=\frac{1}{\cos{75^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)

\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।

\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)

\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore \sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
\(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
আমরা জানি,
\(\cot{75^{o}}=\cot{(45^{o}+30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}-1}{\cot{30^{o}}+\cot{45^{o}}}\) ➜ \(\because \cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)

\(=\frac{1\times\sqrt{3}-1}{\sqrt{3}+1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।

\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)

\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \cot{75^{o}}=2-\sqrt{3}\)
\(\cot{75^{o}}=2-\sqrt{3}\)
দ্রষ্টব্যঃ
\(15^{o}, \ 18^{o}, \ 30^{o}, \ 36^{o}\) ও \(45^{o}\) কোণের ত্রিকোণমিতিক অনুপাত জানা থাকলে নিম্নলিখিত কোণের ত্রিকোণমিতিক অনুপাত নির্ণয় করা যায়।
\(3^{o}=18^{o}-15^{o}, \ 6^{o}=36^{o}-30^{o}, \ 9^{o}=45^{o}-36^{o}, \ 12^{o}=30^{o}-18^{o}, \ 21^{o}=36^{o}-15^{o}\) ইত্যাদি।
উদাহরণসমুহ
\(Ex.1.\) প্রমাণ কর যে, \(\sin{\left(7\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(Ex.2.\) প্রমাণ কর যে, \(\sin{\left(67\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2+\sqrt{2}}\)

\(Ex.3.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{24}\right)}=\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(Ex.4.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{32}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)

\(Ex.5.\) প্রমাণ কর যে, \(2\sin{\frac{\pi}{16}}=2\sin{11^{o}15^{\prime}}=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
ঢাঃ ২০০৮; চঃ ২০১৬,২০১৪; যঃ ২০১৬,২০১৪,২০১০; দিঃ ২০১২,২০১০; বঃ ২০১৪,২০১০; রাঃ ২০১৪,২০১২,২০০৫; কুঃ ২০০৩; সিঃ ২০১৪; মাঃ ২০১১; বুটেক্সঃ ২০০৭-৮; বুয়েটঃ ২০১৩-২০১৪; চুয়েটঃ ২০০৫-২০০৬।

\(Ex.6.\) যদি \(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\) হয় তবে দেখাও যে, \(\cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
ঢাঃ ২০১৪,২০০৬; রাঃ ২০১৫,২০০৯; দিঃ ২০১৬;কুঃ ২০১৫; চঃ ২০০৮; সিঃ ২০১৫,২০১২,২০০৮; বঃ ২০১৫; মাঃ ২০১৩; বুয়েটঃ ২০০১-২০০২।

\(Ex.7.\) \(\sin{\left(22\frac{1}{2}\right)^{o}}\) এবং \(\cos{\left(22\frac{1}{2}\right)^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\sqrt{2-\sqrt{2}}, \ \frac{1}{2}\sqrt{2+\sqrt{2}}\)

\(Ex.8.\) দেখাও যে,
\((a)\) \(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\) \(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)

\(Ex.9.\) যদি \(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2\tan{\alpha}\) হয় তবে দেখাও যে, \(\theta+\phi=2\alpha\)

\(Ex.10.\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে দেখাও যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
বঃ, দিঃ২০১৭;কুঃ ২০১৯ ।

\(Ex.11.\) দেখাও যে,
\((a)\) \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\((b)\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\((c)\) \(\tan{15^{o}}=2-\sqrt{3}\)

\(Ex.12.\) প্রমাণ কর যে, \(\sec{x}=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
ঢাঃ ২০১৪; দিঃ ২০০৯; যঃ ২০০৫।

Read Example
Q.1-এর সংক্ষিপ্ত প্রশ্নসমূহ
প্রমাণ কর
\(Q.1.(i)\) \(\frac{1+\sin{x}-\cos{x}}{1+\sin{x}+\cos{x}}=\tan{\frac{x}{2}}\)

প্রমাণ কর
\(Q.1.(ii)\) \(\frac{1+\sin{\theta}}{1-\sin{\theta}}=\tan^2{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\)

\(Q.1.(iii)\) \(\sec{x}+\tan{x}=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\)

\(Q.1.(iv)\) \(\cot{\theta}=\frac{1}{2}\left(\cot{\frac{\theta}{2}}-\tan{\frac{\theta}{2}}\right)\)

\(Q.1.(v)\) \(\frac{\cos{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}{\sin{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}=\tan{\frac{\theta}{2}}\)

\(Q.1.(vi)\) \(\frac{2\cos{A}-\cos{2A}-1}{2\cos{A}+\cos{2A}+1}=\tan^2{\frac{A}{2}}\)

\(Q.1.(vii)\) \(\frac{1-\tan{\frac{A}{2}}}{1+\tan{\frac{A}{2}}}=\frac{\cos{A}}{1+\sin{A}}\)

\(Q.1.(viii)\) \(\frac{\sec{\alpha}-\tan{\alpha}}{\sec{\alpha}+\tan{\alpha}}=\cot^2{\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}\)

\(Q.1.(ix)\) \(\tan{\frac{\theta}{2}}+\cot{\frac{\theta}{2}}=2cosec \ {\theta}\)

\(Q.1.(x)\) \(\left(1+\tan{\frac{\alpha}{2}}-\sec{\frac{\alpha}{2}}\right)\left(1+\tan{\frac{\alpha}{2}}+\sec{\frac{\alpha}{2}}\right)\)\(=\sin{\alpha}\sec^2{\frac{\alpha}{2}}\)

\(Q.1.(xi)\) \(\frac{2\sin{\theta}-\sin{2\theta}}{2\sin{\theta}+\sin{2\theta}}=\tan^2{\frac{\theta}{2}}\)

Read Short Question
Q.2-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ কর
\(Q.2.(i)\) \(\cos^4{\frac{\theta}{2}}+\sin^4{\frac{\theta}{2}}=\frac{1}{4}(3+\cos{2\theta})\)

প্রমাণ কর
\(Q.2.(ii)\) \(\cos^2{\frac{\theta}{2}}+\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)

\(Q.2.(iii)\) \(\sin^2{\frac{\theta}{2}}+\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)

\(Q.2.(iv)\) \(\cos^4{\frac{\pi}{8}}+\cos^4{\frac{3\pi}{8}}+\cos^4{\frac{5\pi}{8}}+\cos^4{\frac{7\pi}{8}}=\frac{3}{2}\)

\(Q.2.(v)\) \(\sin^4{\frac{\pi}{8}}+\sin^4{\frac{3\pi}{8}}+\sin^4{\frac{5\pi}{8}}+\sin^4{\frac{7\pi}{8}}=\frac{3}{2}\)

\(Q.2.(vi)\) \(\sin^2{\frac{A}{2}}+\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}=\frac{3}{2}\)

\(Q.2.(vii)\) \(\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}\)\(=\frac{1}{4}\left\{4-(\sqrt{5}-1)\cos{\alpha}\right\}\)

\(Q.2.(viii)\) \(\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}\)\(=\frac{1}{4}\left\{4+(\sqrt{5}+1)\cos{\alpha}\right\}\)

\(Q.2.(ix)\) \(\cos{2\theta}=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+1\)

\(Q.2.(x)\) \(\cos{2\theta}=8\sin^4{\frac{\theta}{2}}-8\sin^2{\frac{\theta}{2}}+1\)

\(Q.2.(xi)\) \(\cos^2{\frac{\theta}{2}}\left(1+\tan{\frac{\theta}{2}}\right)^2=1+\sin{\theta}\)

Read Board Question2
Q.3-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ কর
\(Q.3.(i)\) \(2\cos{\frac{\pi}{16}}=\sqrt{2+\sqrt{2+\sqrt{2}}}\)
কুঃ ২০১৩,২০০৭।

প্রমাণ কর
\(Q.3.(ii)\) \(2\cos{\left(7\frac{1}{2}\right)^{o}}=\sqrt{2+\sqrt{2+\sqrt{3}}}\)
কুঃ, চঃ ২০১০; রাঃ২০০৩।

\(Q.3.(iii)\) \((\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\cos^2{\frac{\alpha+\beta}{2}}\)
যঃ ২০১২।

\(Q.3.(iv)\) \(\tan{6^{o}}\tan{42^{o}}\tan{66^{o}}\tan{78^{o}}=1\)

\(Q.3.(v)\) \(\tan{\left(7\frac{1}{2}\right)^{o}}=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)

\(Q.3.(vi)\) \(\tan{\left(82\frac{1}{2}\right)^{o}}=\sqrt{6}+\sqrt{3}+\sqrt{2}+2\)

\(Q.3.(vii)\) \((\cos{\alpha}-\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\sin^2{\frac{(\alpha-\beta)}{2}}\)
যঃ ২০১২।

\(Q.3.(viii)\) \(\sin{(292.5)^{o}}=-\frac{1}{2}\sqrt{2+\sqrt{2}}\)

\(Q.3.(ix)\) \(\cot{(142.5)^{o}}=\sqrt{2}+\sqrt{3}-2-\sqrt{6}\)

\(Q.3.(x)\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{64}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}\)

Read Board Question3
Q.4-এর বর্ণনামূলক প্রশ্নসমূহ
\(Q.4.(i)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে দেখাও যে,
\((a) \ \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
রাঃ ২০০৮,২০০৩; কুঃ ২০১৪; সিঃ ২০১৬,২০১১; বুয়েটঃ ২০১১-২০১২।
\((b) \ \cos{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{a^2+b^2}\)
\((c) \ \tan{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
কুঃ ২০১১।

\(Q.4.(ii)\) যদি \(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
\((b) \ \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)

\(Q.4.(iii)\) \(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\) তবে দেখাও যে, \(\cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
যঃ ২০১৭।

\(Q.4.(iv)\) যদি \(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\)
যঃ ২০১৭।

\(Q.4.(v)\) \(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\) হলে দেখাও যে, \(\cos{\frac{C}{6}}=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
যঃ ২০১৯; কুঃ,চঃ ২০১০।

\(Q.4.(vi)\) \(\angle{E}+\angle{F}=65^{0}, \ \angle{F}-\angle{E}=25^{0}\) হলে দেখাও যে, \(2\sin{\left(\pi+\frac{F}{4}\right)}=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
যঃ ২০১৭।

\(Q.4.(vii)\) \(x=\sin{\frac{\pi}{18}}\) হলে দেখাও যে, \(8x^4+4x^3-6x^2-2x+\frac{1}{2}=0\)

\(Q.4.(viii)\) \(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\) হলে দেখাও যে, \(\frac{\tan{\frac{1}{2}\theta}}{\sqrt{a+b}}=\frac{\tan{\frac{1}{2}\phi}}{\sqrt{a-b}}\)

\(Q.4.(ix)\) \(\cos{36^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{4}(\sqrt{5}+1)\)

\(Q.4.(x)\) \(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\) হলে দেখাও যে, \(\cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)

\(Q.4.(xi)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)

\(Q.4.(xii)\) \(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ হলে দেখাও যে, \(\sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)

\(Q.4.(xiii)\) দেখাও যে, \(\sin{x}=2^n\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}} ...... \cos{\frac{x}{2^n}}\sin{\frac{x}{2^2}}\)

\(Q.4.(xiv)\) যদি \(\sin{\theta}=\frac{a-b}{a+b}\) হয় তবে প্রমাণ কর যে, \(\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\pm{\sqrt{\frac{b}{a}}}\)

\(Q.4.(xv)\) যদি \(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\) হয় তবে প্রমাণ কর যে, \(\tan{\frac{\theta}{2}}\) অনুপাতের একটি মান হবে \(\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)

\(Q.4.(xvi)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)

Read Board Question4
Q.5-এর সৃজনশীল প্রশ্নসমূহ
Read Creative Question
ভর্তি পরীক্ষায় আসা প্রশ্নসমূহ
Read Admission Question

Read More

Post List

Mathematics

Geometry 11 and 12 standard
Algebra 11 and 12 standard
Trigonometry 11 and 12 standard
Diff. Calculus 11 and 12 standard
Int. Calculus 11 and 12 standard
Geometry Honours course standard
Vector 11 and 12 standard
Vector Honours course standard
Algebra 9 and 10 standard
    Coming Soon !

Chemistry